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ABSTRACT

We describe an efficient method of track fitting for charged particles moving in
an arbitrary inhomogeneous magnetic field. The method is a least-squares fit in
3-dimensional space which assumes local field uniformity to approximate the orbit
as a set of linked helical segments. We propagate the orbit and error matrix in order
to calculate the residuals and their derivatives analytically at the position of the
hit wires. The accuracy of the method depends only on the step size of the linked
helical segments. The fit converges rapidly to the point of minimum x?; one needs
oply a few iterations even for poor starting values of track parameters.



1. Introduction

There exist a great number of different algorithms for fitting momenta of charged
particles in a magnetic field. In most cases they make use of detector particularities
and are therefore of little general interest. One may, however, group them in the
following way:

(i) A fit to an analytical correct track model. It may be illustrated by a fit to
a straight line in a field-free region or to a helix in a homogeneous magnetic

field.

(iz) A fit to a numerical correct track model. Here one solves the equation of
motion numerically for the track parameters. This procedure can be made as
precise as requested and always works biit is the slowest one.

(i) A fit to an analytical incorrect track model. A model of the track is cho-
sen which is a sufficient approximation to the real track, but which in itself
does not fulfill the equation of motion. In this category we find polynomial
approximations (parametrization), and in particular spline curvesll, The
parametrization method is sensitive to detector inefficiencies, major cham-
ber displacements and the phase-space region. Therefore, many different
parametrizations have to be performed. The method may be used to give
a first estimate of the track parameters for a subsequent fit.

Usually, the experimental layout is chosen such that the first approach can be taken.
This means, in practice, placing all chambers either outside a magnetic field or in
a homogeneous one. Even if an analytical model is employed (i), it is advisable to
implement the numerical method (ii) first. In particular, there always remains a
tricky phase-space region or magnetic field region where the numerical model must
be utilized because the other methods do not work, or it is not worth the effort as
long as the percentage of tracks concerned is small.

The numerical method of fitting, when all drift chambers are placed in a
solencidal magnetic field, is discussed elsewherel*3l. The derivatives needed for
least-squares fitting are calculated assuming a homogeneous field along the drift
chamber wires. The analytical formulae, used for calculation of derivatives, are
good approximations even for a slightly non-uniform magnetic field.

In this paper we describe in detail the numerical method of track fitting, de-
veloped for the CLAS detector!!l at CEBAF. The CLAS detector is a magnetic
multi-gap spectrometer based on a large iron-free toroid with six superconducting
coils. In each of the six sectors of the toroidal magnet, the CLAS {racking detector
is organized in three separate packages (Regions 1,2 and 3) each consisting of an
axial and a stereo superlayer. A superlayer consists of 6 layers of sense wires; each
layer consists of 192 sense wires (in Region 1 of 128 sense wires) which are parallel
to the local z axis and perpendicular to the middle (z,y) plane in a given sector.
The wires in stereo superlayers are canted at 6° with respect to the z axis. The
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incident beam is parallel to the z axis. The cells are oriented such that subsequent
layers are shifted by one-half of a cell in order to resolve the left-right ambiguity.
Region 1 is a low magnetic field region (~ 0.05 kG) inside the inner coil of the
toroid and located at a distance of ~ 60 cm from a target position. Region 2 is a
high field region (~ 10 kG) situated within the toroid, while Region 3 is located
beyond the outer coil (magnetic field ~ 1 kG). The magnetic field vector is along
the wires (H; = Hy = 0) only in the middle plane between the coils; near the coils
the field components (H,, H,) become substantial and may even change sign along
the particle trajectory.

The method is a least-squares fit in 3-dimensional space which assumes local
field uniformity to approximate the orbit as a set of linked helical segments. We
propagate the orbit and error matrix[®! in order to calculate the residuals and their
derivatives analytically at the position of the hit wires. The accuracy of the method
depends only on the step size of the linked helical segments, and on the representa-
tion of the inhomogeneous magnetic field.

2. Measured tracks

We assume that a charged particle traverses the drift chamber and fires N sense
wires close to its trajectory. By means of the space time relation the drift time
measured at wire ¢ can be converted to a distance of closest approach dmeq,i- The
measured distances form an N-dimensional vector J;,.,c,. The resolution function
gives the uncertainties o; of the measurements.

In the following it will be assumed that the calibration is completed, i.e. the
proper space time relation and resolution function are known. We shall also assume
that pattern recognition has succeeded in

(7) grouping the measurements according to track candidates,

(#) ordering the measurements for one track according to increasing path length
from some starting point, and

(#42) resolving the left-right ambiguities at all wires.
3. Reference frame and parameters

The dip angle A and azimuthal angle ¢ are defined by the following expressions
for the momentum components in & (€z, €y, €;) lab reference frame

Pz pCcos A cos
p=|p, | =] peosA sing | =p-7 (1)
Pz psin A

The particle traveling with constant velocity in a magnetic field is described
by specifying five parameters at a uniquely defined reference point. The reference
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point is usually chosen to be the track point which is closest to the origin (target
position) or to the point of closest approach to the innermost hit wire. A convenient
set of parameters is:
(1/p)
A

® (2)
d

\ =z /

The theoretical track will be denoted by a N-dimensional vector J(nj') which is a
function of the 5-dimensional parameter vector ¢. The parameters q are determined
by fitting the theoretical track points d(q“') to the measured points dm“,

Wy
it

4. Least-squares fit

The purpose of the track fit is to find the set of track parameters ¢ which
minimizes the quadratic form

N
xg - Z [dmeca,l' - dz(q_)]z (3)

Minimizing x? as a function of §'is equivalent to finding a solution of the system of
equations

X —0 for p=1,..,5 (4)

The system of eqs. (4) is nonlinear because the function d(§) is nonlinear, and an
iterative procedure has to be used to solve for ¢. In order to linearize d(4) and to
obtain the true solution g, the Taylor expansion around an approximate solution ¢n
is used. Neglecting higher order terms, this yields the linear system of equations:

-

DTW.D(E— En) - DTW[d-;neas - d(ﬁ‘n)] (5)

where D is the Jacobian matrix {D;,) = (8d;/8q,) and W is a weight matrix (the
inverse of the covariance matrix of the measured drift distances d;). Equation (5)
can be solved for the parameter correction A7 = ¢ — gn. With this correction one
gets a new approximation

é‘n-i—l = é.n + A‘T (6)

After a few iterations n, one usually obtains a solution close to ¢, provided one starts
with a good first approximation gy, given by the pattern recognition procedure.
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5. The particle trajectory

For the calculation of the distances of closest approach d{(§), one needs an an-
alytical expression for the trajectory of a charged particle moving in a magnetic
field. First, we consider the case of a homogeneous magnetic field in the z-direction
H= (0,0, H} and assume that the track starts at

0
Zo=] 0 (D
0
with & momentum
0
Po=p-to=p| cos (8)
sin A

where # denotes the initial tangent unit vector and A the dip angle with respect
to the (x,y) plane. The particle moves on a helix with its axis parallel to H. The
helix is conveniently parametrized by the turning angle © in the (x,y) plane:
1—cos®
£O)=p sin © (9)
©tan A

The angle © is related to the track length I, which would be an equally good choice
for the independent trace parameter:

QH
0=
» (10)

where @ is the charge of the particle. The projection of the particle trajectory into
the plane perpendicular to the field is a circle with radius

os A
= 07 (11)

Differentiation of eq. (9) together with egs. (10 and 11) yields an expression for
the track tangent as a function of I:

sin ©®
8:;(11) =#{I) = cos A | cos® (12)
’ tan A

For an arbitrary magnetic field H(Z), the particle trajectory can be described
by linked helical segments. The particle is traced from a point #; with tangent

5



vector #; and magnetic field H(%;) to point Z;;; with tangent vector ;1. If the
distance between #; and ;4 is sufficiently small, the magnetic field in between can
be assumed to be constant.

For the tracing procedure it is useful to define a local coordinate system which
varies along the particle’s trajectory. At the point &; it is given by the following
unit vectors: .

B = f_{(t‘)
|H ()|

= XN (13)
[t x hil

The ordered vector triplet (7, bi, E,) defines an orthonormal right-handed coor-
dinate system. The orientations of the initial momentum and the magnetic field in
this system satisfy the initial conditions (8). Hence one can immediately adopt the
results (8) for the orbit and (12) for the track tangent. For a tracing step from Z;
to £i11, the new point is obtained using eq. (9):

Tiy1 = £ + p[(1 — cos ©;) - 7i; + sin © - b; + O; tan ) - ;] (14)
The new tangent direction is given by eq. (12):
f;.H = cos A;{sin O; - 7 + cos O; - I_a',- + tan A; - f;,) (15}

Thus, starting from a track point £y with tangent £y, these formulae allow for the
calculation of the particle trajectory in an arbitrary magnetic field. The accuracy
of the method of linked helical segments depends on the step sizes |Z;;; — Zi| and
on the homogeneity of the field. Deviations from the true particle trajectory can
be easily kept small compared to the spatial resolution of the drift chamber.

However, one can save the calculation of b; and the normalization of 7; by
replacing

7= t-; —sin X 'f-l:.'
T cos A;
and
PR (16)
- cOs A;

This yields the following forms for equations (14) and (15):

Tiy1 = ;i + :A-[(l ~ 08 0;) - (£ X ki) + sin ©; - §; + (O; — sin ©;) sin X; - k4] (17)
t

CO
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and
tiv1 = 6in©; - (& X h;) + cos ©; - §; + (1 — cos ®;)sin A; « A; (18)

These expressions are used in our program.

6. Distance of closest approach

The ultimate purpose of tracing is the determination of the distances of closest
approach a-!tq') of a track to the hit wires. As the track can pass on either side of the
wire, the distance of closest approach d; must be a signed quantity. The direction
d@; along which d; is measured is perpendicular to w; and #; and given by

L Wixi

&= X4 19
[0 x t;] (1)
The distance of closest approach is given by the projection of &; — Wy; onto this
axis

di = (£ - Woi) - &, (20)

where Wy, is the wire position in the plane z = 0. For axial wires (W; = €;) the
distance d; is measured in the (x,y) plane.

The sign convention for d; becomes clear in the view against ;. Following
a particle along #;, a track passing on the left (right) side of a wire gives d; > 0
(di < 0). The same signs must be applied to the measured drift distances.

7. Transport matrix and derivatives

As was shown in section 4, an iterative track fit requires the calculation of the
derivatives 8d;/8g, at any point £; along the particle trajectory.

Before discussing a general case it is useful to consider the case of a homogeneous
magnetic field in the z-direction (as in a solenoidal detector). In this case, to
calculate the derivatives at any track point Z;, one has to insert eq.(17) into eq.(20)
and to differentiate with respect to all track parameters go, = (1/p, Ao, ¥0,do, 20)
for a track (£o,%o) at the origin. This yields the following results:

BCECR

- Li(€; - &)/ sin Ag
o= | - ) @l (21)
0~ d;
N &a )




where L; is the total track length between the space points £y and Z;, and

ug = (22)

lé.z xf&l

None of the above derivatives refers to the sign or magnitude of the magnetic field
explicitly, i.e. they are purely geometrical quantities calculated in the fixed (lab)
coordinate system. One can see immediately that the derivatives 8/8Ap and 8/8z
are zero for the axial wires, since vector product (€; - ;) is equal to zero. The three
parameters (1/p, po,do) describe a circle which is the projection of the helix onto
the (z,y) plane. Information about these parameters comes from axial as well as
stereo wires, whereas information regarding A¢ and z¢ can be obtained from stereo
wires only.

In the following sections we will discuss the calculation of the derivatives for an
arbitrary magnetic field.

7.1 Local coordinate system

We define a local coordinate system (transverse system), in which z coordinate
is measured along the particle momentum £, and (y1,21) coordinates are measured
along directions @ and ¥ perpendicular to #:

g= Xt (23)
l&x x 1]
and
T=tx4 (24)

The transformation matrix between coordinates (z,y, z) in the lab reference frame
(€%, €y, €:) and coordinates (z1,y;,2,) in the local coordinate system (£, %, ¥) is:

x| €os A cos cos Asing  sin A z
y. | = —sing cos 0 ) (25)
z) —sindcosy —sinAsing cosA z

7.2 Calculation of the transport matrix

In this section we will discuss the error propagation, from a starting point of the
track propagated to the end of the track, in the presence of a magnetic field. Given
an error matrix Ry at I = 0 for the variables (1/p, A, ¢,¥.1, 21 ), which refers to the
plane perpendiculer to the track at I = 0, we ask for corresponding error matrix R;



after a path length [, refering now to the plane perpendicular to the track at point
. If T} is the transformation matrix between the variables at I = 0 and !

(61/11\ (61/}7\
D) A
(bqh= | b =T;-{ bp =T;-(69)o (26)
by) by1
\ 6z, ] 1 \ 62, /] 1=0

then R; is obtained from Ry by

Ri=T;-Ry -TT (27)

We will now compute the transformation matrix T} in the presence of a magnetic
field, which varies both in strength and direction along the track.

Before calculating the errors (8¢); at the end of the track we consider first the
error propagation along a short length dl from I to (I + dl). The error at (I + dl)
will have the following contributions:

(ot =T +dl-Apa+dl-Brg) (6g) = M- (6gh (28)

The first two contributions to the matrix M would be present even without a
magnetic field. This part takes into account the fact that an error in the direction
of the track at I causes an error in the position of the track at (I + dI). The term
dl- Byiaq-(8q)1 is due to the deflections caused by the magnetic field. In eq. (28) I

1s the unit matrix.

By dividing the total track length ! into small steps of size Al = [/N and
applying the above relation for each step n, one obtains:

N
(600 = (J] Ma)- (62)0 = T1 - (6200 (29)

n=]

The matrices M, may be calculated during the track tracing, and transport matrix
T; gives the full error propagation from point { = 0 to [.

Calculation of the matrix A. Only the elements connected with (6y, );.a and
(621 }i+a1 are different from zero since §A/dl and i /dl vanish if no magnetic field

is present.



The error 6z, at (I + dl) due to §A at lis
$z; =dl-6\ (30)
Similarly the error 8y, at (I + dl) due to an error §p) at [ is
dyy =dl-cosA-8A (31)

With egs. (30) and (31) we obtain matrix A:

(00 0 0 0)
00 0 00
A=]o o o o o0 (32)
0 0 cosA 0 O
\o 1 0o o0 0)

Calculation of the matrix B. To compute the matrix B we use the relation (10)

sin Adyp

do=—0f-%-| _a (33)

cos Ady

where H stands for 0.3 x 1073 x charge x field x [GeV - em™! - kG™1).

Equation (33) tells that the direction of a particle with momentum p is rotated by
the field H on the path length dl by an angle d©, with the axis of rotation parallel
(or antiparallel) to H.

More explicitly eq. (33) reads

dA —H

d(P p c_os’x
where H; is the field component perpendicular to (z),z ) plane and Hj is the field
component perpendicular to {(z,y.) plane. We also define Hy and H; which will

be used below:

Hl=(ﬁ-ﬂ= HocosA+H,sin.\=—2§\i
- 6H
H; =(H %)= —H:sinp + Hycosp = —a; (35)
. ) 5
Hy=(H -¥) = —HpsinA+ HzcosA = %

where Hy = H, cosp + Hysing = —8H3/8p. Thus, (H1, H3, Hy) is the field vector

represented in the transverse (£, %, ¥) reference frame.
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From eq. (34) we obtain:

d) —H, 1 {—H; dl —Hj;
5(@)=—(c_glx)dz-m/p),-;(%)s(dz)—;-a(c_gix) (36)

Now we derive the term §(dl). To define completely an error matrix it is also
necessary to specify a few conventions. We will adopt the condition &z, = 0, which
means that the error matrix refers to a plane perpendicular to the track. The
condition §z; = 0 implies that in general §(dl) # 0. Because of the influence of the
magnetic field in the interval (I + dl), the coordinate system (z,y,,2 ) is rotated
by the angle dO, so that we get at (I + di):

bz 1 cos Ady dA 0 é(dl)
Sy = | —cosdp 1 sin Ady byy + 0 (37)
bz, /] 14dl —dA —sin Ady 1 bz, /1 0

In the last column of this equation, terms of second order in di have been suppressed.
The condition (éz )i 41 = 0 implies

6(dl) = —cos Ady - {8y, )1 — 6 - (621 ) (38)

By differentiating the last term of eq. (36) with respect to A and ¢ we obtain

Y B T L P Ho 5 39
c—‘glx - c—gﬁ ( )I+ _th.Hz (‘P)I ( )

With eqgs. (34), (36), (38) and (39} we find for matrix B

( 0 0 0 0 0 \
H, 0 _ % H:H, _ H:H,
— H. H, AH, HyH H,H
B = —zosX ) cost X tmp 2 - cosX ?_:EIX (40)
0 0 0 0  _fHuemd
Hytan A
\ o0 0 I o

Thus, for an infinitesimal path length dl, transport matrix M is given by
M=I+(A+B)-dl (41)

where I is the unit matrix.

11



Derivatives D;,. The derivatives with respect to the track parameters at the
origin gou = (1/8, Ao, @0, do, 2) are given by

(T4,1) )

| Ts,2)- a(3)

Dy, = 2B) _ | 14,5 (42)
qou

Ti(4,4)

\ T3(5,5) - (3); /

The parameters gy are determined by fitting the track points di(go) along the trial
trajectory to the measured points dreqs,i 8s is outlined in section 4.

Measurements in 2-dimensions. Let us consider the experimental layout, where
all drift chambers consist of axial wires only, but with charge division measurements
along z. In this case, the matrix D in eq. (5) must be replaced by the transport
matrix T, and the vector AV = dmeas,i — di(do) by

()

i

(43)

b
i

dmeac,i - ds(q-h)
\ Zmegs,i — zi(q-'O) )

The weight matrix W in eq. (5) now represents the 2x2 covariance matrix of the
measurements on plane .

8. Test results

We have made extensive tests with Monte Carlo generated events, using the
GEANT simulation of the CLAS detector. Realistic particle trajectories traversing
the CLAS magnetic field were simulated. The magnetic field was calculated only
once at the node points of a 3-dimensional grid. During actual particle tracing, the
field inside of each elementary grid volume is approximated using a second order
interpolation between the grid points. The coordinates (z;,:, 2:) of hits generated
by a charged particle passing through a cell of the drift chamber were digitized. The
digitization yields the wire number and the minimum drift time. The drift time
was smeared according to the expected position resolution of the measurement, 200
pm. The track fitting was tested over the full range of momenta and angles. As
an example, for a 1GeV track the fit gives a momentum resolution of §p/p ~ 0.1%
(without multiple scattering),and §p/p = 0.25% when both the position resolution
and multiple scattering contribution were included.
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Execution times. The results of timing depend essentially on the step size and
on the track length. On a VAX8700 computer, for the step size of 1 ¢m (about 400
steps per track), the total execution time is ~290 ms per iteration. About 55% of
this time is used for computing the magnetic field and an orbit propagation. The
rest of the total time is spent for the calculation of transport matrix T’ and actual
fitting procedure.

Convergence properties. The convergence depends on the starting values of the
track parameters used for the first iteration, and also slightly on the non-uniformity
of the magnetic field, especially close to the superconducting coils (deep angle |A]| >
15°). As an example, in Table I we show the results for a 1GeV particle starting
at the origin and with angles: Ap = 10° and g = 50°. Omne can see that the
fit converges rapidly even for bad starting values (iteration 0): Zp = (5.0,0.0,0.1),
p = 1.1GeV, Ap = 0° and g = 49°.

Table I. Convergence of the fit

Iteration| p Ao ©o do 20 x?
Number | [GeV] | [De [Deg] [em] fem)

0 1.1000 | 0.0000 |[49.0000 [-3.7740 | 0.1000 | 0.128E+06
0.9864 | 9.1578 |50.4323 | 0.3937 |-0.3253{0.180E+04
0.9874 |10.0186 ;50.0326 | 0.0416 |-0.0349|0.813E+02
1.0003 |10.0614 | 50.0005 { 0.0065 |-0.0054|0.643E+00
1.0002 [10.0349 [50.0022 | 0.0085 [-0.0071|0.644E400

W N

For typical starting values given by the CLAS pattern recognition program
(AX, Ap < 1° and Ap/p < 5%), one needs no more than three iterations to converge
to the point of minimum of x32.

9. Conclusion

From the tests we have done, the accuracy of the method depends only on the
step size of the linked helical segments, and on the representation of the inhomoge-
neous magnetic field. The fit converges nearly as rapidly as in the case of 2 uniform
magnetic field, but needs somewhat more time per iteration (~ 40%) due to cal-
culation of the transport matrix and the magnetic field from the grid points. The
method could be speeded up by a more efficient representation of the magnetic field
snd optimalization of the code itself.

We conclude that track reconstruction in a very inhomogeneous magnetic field is
possible with easily available computer resources.
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